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ABSTRACT 
Lamb wave is considered as an appropriate approach to 

detect the cracks in structures. This paper combines an efficient 
time-domain spectral finite element with time reversal method to 
develop an efficient breathing crack detection method. In this 
regard, Gauss-Lobatto-Legendre quadrature rules and penalty 
function method are carried out to construct an effective and 
accurate approach. Comparing the computation scales and 
results of this method and traditional finite element method, the 
validity and superiority of the proposed model is stressed. The 
reconstructed signals of two scenarios, intact and impaired 
structures, are captured. It is concluded that, this approach is 
capable of detecting breathing cracks. In addition, the influences 
of the relative depth of the notch and incident region are studied. 
This research may provide the guidance for experiment 
configuration and the further study. 

Keywords: Lamb waves; time reversal focusing; time-
domain spectral element finite method; breaking crack; 
nonlinear waves 

1. INTRODUCTION
Breathing cracks are great threats to structures, since they

grow quickly and are hard to detect. Hence, many crack detection 
strategies have been developed in structural health monitoring. 
Lamb waves have been regarded as an effective way to detect the 
defects in structures because it can propagate over long distance 
and carry damage information without much attenuation [1]. 
However, the phenomenon, such as scattering, emission, 
dispersion and reflection, brings difficulties for recording and 
analyzing the signal in wave propagation [2]. Time reversal 
method can eliminate these drawbacks and establish a kind of so-
called baseline-free damage detection method, which is superior 
in signal-to-noise ratio [3]. The process of time reversal can be 
simply expressed as that, a signal can be reconstructed at the 
excitation point if a response is reversed in time domain and 
reemitted to the excitation point. The principle and mathematical 
derivation of time reversibility can be found in many literatures 
[4, 5]. 

Time reversal method has been widely used in the field of 
structural health monitoring as a mature technology. H. W. Park 
et al combined time reversal method and wavelet-based signal 
processing to detect the defects in composite plates [6]. In their 
study, based on the Mindlin plate theory, a time reversal operator 
is introduced to enhance the time reversal method and their work 
is validated by the experimental results. B. Poddar et al 
developed baseline-free damage identification method by using 
the Lamb wave and time reversal method [7]. The influences of 
many parameters, such as frequency, band width, the size of 
sensors and tuning, are studied by experimental tools. The results 
show that some damages like notch, block mass and surface 
erosion in the wave path break the time reversibility. Hence, the 
distortion of waveform can be an indicator for defects. Wang et 
al developed an artificial time-reversal array to overcome the 
main drawback of traditional time reversal method, which cannot 
precisely reconstruct the profiles of input signals in the case of 
flexural waves [8]. The results demonstrate that their method has 
a better robustness and may reduce the sensor density without 
the decreasing of measured accuracy. 

Detection of cracks using Lamb waves and time reversal 
method relates to a complex study. It requires numerical method 
to predict the nonlinear wave propagation and decide preferred 
indicators[9].The time-domain spectral finite element method 
(SFEM) has been used to simulate the wave propagation in 
different scenarios, which was proposed by Patera in fluid 
dynamics firstly [10]. This method can be viewed as a special 
type of FE method and bears some similarity with the p-version 
FE method [11]. The main idea of this method is the 
implementation of a special high-order interpolation function. In 
each spectral finite element, the inner interpolation nodes are 
collocated non-uniformly at the Gauss-Lobatto-Legendre (GLL) 
points, which coordinates are relative to the first derivative of nth 
Legendre polynomial. In this regard, the significant drawback of 
high-order FE method in solving wave propagation called 
Runge’s phenomenon can be effectively suppressed [12]. 
However, to the best of the authors’ knowledge, there are few 
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studies related to the crack detection using SFEM and time 
reversal method. 

This paper takes advantages of the SFEM and time reversal 
method to develop an efficient breathing crack detection 
approach. Firstly, a contact spectral element is derived to model 
the separate cracks. The proposed method is validated by 
traditional finite element method (FE method) and the efficiency 
is addressed by comparing the mesh scale. The results 
demonstrate that this method can detect cracks and has potential 
to identify the depth and location of cracks. 

2. THE TIME-DOMAIN SPECTRAL FINITE ELEMENT
METHOD FOR BREATHING CRACKS
As shown in Fig. 1, there is a 4th order time-domain spectral

finite element. The interpolation nodes are nonlinear configured 
at the element, different from the traditional finite element 
condition. This feature eliminates the influence the Runge’s 
phenomenon, which indicates a problem of oscillation near the 
edges of an interval that occurs when using polynomial 
interpolation with polynomials of high degree over a set of nodes 
spaced in a uniform grid. Hence, the high-order Lagrange 
polynomial function is available for SFEM without critical errors 
and fast convergence of dynamic simulation is achieved. For the 
proposed element, the coordinates of interpolation nodes are 
determined by GLL nodes, which are the roots of the following 
formulation: 

(1 − 𝜉𝜉2)𝑃𝑃𝑛𝑛′(𝜉𝜉), and (1 − 𝜂𝜂2)𝑃𝑃𝑛𝑛′(𝜂𝜂) (1) 

where 𝑃𝑃𝑛𝑛′(𝜉𝜉), and 𝑃𝑃𝑛𝑛′(𝜂𝜂) represent the first derivative of the nth 
order Legendre polynomial in two main direction, respectively.  

(a) HIGH-ORDER FEM

(b) HIGH-ORDER SEM
FIGURE 1: THE COMPARISON OF TRADITIONAL FEM 
AND PROPOSED SEM 

The governing equation obtained by Hamilton principle is: 

𝐌𝐌�̈�𝒒 + 𝐂𝐂�̇�𝒒 + 𝐊𝐊𝒒𝒒 = 𝐅𝐅(t) (2) 

where 𝐌𝐌 , 𝐂𝐂 , 𝐊𝐊  and 𝐅𝐅(t)  denote the mass matrix, damp 
matrix, stiffness matrix and external force vector, respectively 
and 𝒒𝒒  is the displacement vector. The definitions of matrices 
are expressed in many literatures and will not be described here. 

A plate with length L, thickness h and width b is illustrated 
in Fig. 2. At the middle of the plate, there is a single edge notch, 
which is V-shaped and depth is 𝑑𝑑𝑐𝑐. The surfaces of crack touch 
each other under the influence of external load and then separate 
when force is unloaded. The behavior is defined as the 
‘breathing’ of cracks. In this regard, the matrices of open cracks 
are determined by the linear element and the Jocabian matrix is 
carried out to distinguish the notch element. When the crack 
closes, the separable hard contact model is used to simulate the 
contact nonlinearity. 

FIGURE 2: DIAGRAM OF PLANE WITH A NOTCH. 
In the case of crack model, the energy relationship of two 

contact surfaces can be expressed as: 

Π = U − W + G (3) 

where Π , U and W denote the total energy, strain energy and 
external work, respectively. G is constraining item for the 
nonlinear contact. Based on the variation principle, the total 
energy gets extremum when: 

δΠ = δU − δW + δG = 0 (4) 

the variations of stress energy and external work parts are: 

δU = ∫ (𝛿𝛿𝛿𝛿)𝑇𝑇𝑉𝑉 σdV (5) 

δW = ∫ (𝛿𝛿𝛿𝛿)𝑇𝑇𝑃𝑃𝑑𝑑𝑃𝑃 +𝑉𝑉 ∫ (𝛿𝛿𝛿𝛿)𝑇𝑇𝑡𝑡𝑑𝑑ΓΓ + ∑(𝛿𝛿𝛿𝛿)𝑇𝑇 𝐹𝐹 (6)

The constrain constituent G can be defined in the form of penalty 
function: 
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G = 1
2 ∫ 𝑔𝑔𝑇𝑇Λ′𝑔𝑔𝑑𝑑Γ𝑐𝑐Γ𝑐𝑐

 (7) 

where Γ𝑐𝑐  represents the contact surfaces and Λ′ =
𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔(𝛼𝛼1,𝛼𝛼2)  is the penalty coefficient. 𝑔𝑔  is equation of 
constrain condition. 

A typical situation of a contact pair is shown in the Fig. 3. 
Ω1  is contactor and Ω2  is target. The points 𝑑𝑑  and 𝑗𝑗  are 
hitting point and target point and 𝐹𝐹𝑖𝑖 and 𝐹𝐹𝑗𝑗 are contact force. 
The constrain condition can be expressed in two aspects. On one 
hand, impenetrability is necessary for contact behavior. It means 
that objects Ω1 and Ω2  are not allowed to invade each other 
during the movement. Mathematically, the gap distance is non-
negative: 

𝑔𝑔 = 𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 + 𝑑𝑑𝑝𝑝 ≥ 0 (8) 

where 𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑗𝑗 and 𝑑𝑑𝑝𝑝 are displacements of points 𝑑𝑑 and 𝑗𝑗 and 
initial gap, respectively. On the other hand, the contact is 
separable; therefore, the normal contact force is always 
compressive force: 

𝐹𝐹𝑖𝑖 = −𝐹𝐹𝑗𝑗 ≥ 0 (9) 

The contact force can be calculated based on Equation (4): 

𝐹𝐹𝑖𝑖 = −𝐹𝐹𝑗𝑗 = −Λ𝑔𝑔 (10) 

combined with Equation (8): 

𝐹𝐹𝑖𝑖 = −𝐹𝐹𝑗𝑗 = −Λ(𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 + 𝑑𝑑𝑝𝑝) (11) 

In the actual scenario, the target point is not always an element 
node. The displacement of target point can be calculated by the 
shape function and nodes displacements. Thus, the relative 
displacement of the contact pair is: 

𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 = 𝑁𝑁𝑐𝑐𝑑𝑑𝑐𝑐 (12) 

where 𝑁𝑁𝑐𝑐 and 𝑑𝑑𝑐𝑐 are defined as: 

𝑁𝑁𝑐𝑐 = [𝐼𝐼2×2 𝑵𝑵] (13) 
𝑑𝑑𝑐𝑐 = [𝑢𝑢𝑖𝑖 𝑼𝑼]𝑇𝑇 (14) 

𝐼𝐼2×2 is square identity matrix with 2 by 2. 𝑵𝑵 and 𝑼𝑼 are shape 
function and nodes displacement of target element, respectively. 
In addition, the coordinate transformation matrix 𝑇𝑇  is 
considered when the local coordinate of contact pair does not 
coincide with the global one. In this manner, the contact force in 
global system is: 

𝐹𝐹𝑖𝑖 = −𝐹𝐹𝑗𝑗 = −𝑁𝑁𝑐𝑐𝑇𝑇𝑇𝑇Λ𝑇𝑇𝑇𝑇𝑁𝑁𝑐𝑐𝑑𝑑𝑐𝑐 − 𝑁𝑁𝑐𝑐𝑇𝑇𝑇𝑇Λ𝑑𝑑𝑝𝑝 (15) 

or written as: 

𝐹𝐹𝑖𝑖 = −𝐹𝐹𝑗𝑗 = −𝐾𝐾𝑐𝑐𝑑𝑑𝑐𝑐 + 𝐹𝐹′ (16) 

Where 

𝐾𝐾𝑐𝑐 = 𝑁𝑁𝑐𝑐𝑇𝑇𝑇𝑇Λ𝑇𝑇𝑇𝑇𝑁𝑁𝑐𝑐 (17) 
𝐹𝐹′ = −𝑁𝑁𝑐𝑐𝑇𝑇𝑇𝑇Λ𝑑𝑑𝑝𝑝 (18) 

FIGURE 3: CONTACT PAIR AND THE GAP DISTANCE. 
Hence, the governing equation is modified by taking 

account of contact as: 

𝐌𝐌�̈�𝒒 + 𝐂𝐂�̇�𝒒 + (𝐊𝐊 + 𝐊𝐊𝐜𝐜)𝒒𝒒 = 𝐅𝐅(t) + 𝐅𝐅′(t) (19) 

In our proposed strategy, the central difference scheme with 
suitable time step is carried out to solve the second-order 
differential equation. The iterative equation can be expressed 
when zero initial conditions, i.e., 𝒒𝒒 = 0 and �̇�𝒒 = 0 at t = 0 as: 

1
Δt2

𝐌𝐌𝒒𝒒t+Δt = [𝐅𝐅(t) + 𝐅𝐅′(t)]− �𝐊𝐊 + 𝐊𝐊𝐜𝐜 −
2
Δt2

𝐌𝐌�𝒒𝒒t −
1
Δt2

𝐌𝐌𝒒𝒒t−Δt (20) 

Δt denotes the time step of integration and the damping is not 
considered here. The explicit algorithm is conditionally stable 
and the stable condition is: 

Δt ≤ ∆tcr = Tn
π

 (21) 

where ∆tcr is the critical stable time step and Tn denotes the 
minimum natural vibration period of dynamic system. It is noted 
that the Tn is a function of contact stiffness 𝐊𝐊𝐜𝐜. Based on the 
definition of 𝐊𝐊𝐜𝐜, the penalty coefficient Λ′ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔(𝛼𝛼1,𝛼𝛼2) is a 
key parameter of critical stable time step. Theoretically, the 
accuracy of resulting solution increases as the penalty coefficient 
increases. However, on one hand, the great penalty coefficient 
brings a tough requirement on critical stable time step, which 
increases the computational time. On the other hand, the contact 
force is proportional to the coefficient. The large penalty 
coefficient may result in illusive reverse[13]. 

3. MODEL VALIDATION
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To validate the developed spectral element method, a 
typical aluminum structure with crack is studied in this section. 
The dimensions of the structure and crack are illustrated in 
Figure 4 and the material properties are listed in Table 1. A load 
is induced at the left edge in the x direction by applying a 
boundary displacement, which is generated by a Hanning 
windowed sinusoidal signal with frequency 100 kHz, 

𝑃𝑃(t) = 1
2
𝑃𝑃0 × (1 − cos (2𝜋𝜋𝜋𝜋

𝑛𝑛
𝑡𝑡))sin (2𝜋𝜋𝜋𝜋𝑡𝑡) (22) 

where 𝑃𝑃0 is the peak value of the displacement and 𝑛𝑛 equals 5 
which is the number of tunnels. The response is picked up at 𝑥𝑥 =
0 𝑚𝑚 edge, which is the same region as the loading. 

(a) THE DIMENSION OF PLATE.

(b) THE DIMENSION OF CRACK.
FIGURE 4: THE DIMENSIONS OF A PLATE WITH 
CRACK. 

TABLE 1: THE MATERIAL PROPERTIES OF THE 
STRUCTURE. 

Young’s 
modulus E 

(pa) 

Density 𝜌𝜌 
(kg/𝑚𝑚3) 

Poisson’s 
Ratio ν 

Aluminum 7 × 1010 2700 0.3 
According to the curve of frequency thickness product, the 

mode of guided wave, in this case, only contains S0 and A0 
modes, which can avoid the interference from other mode waves 
and capture the nonlinear behavior. The convergence analysis is 
carried out to simulate the wave propagation with a reasonable 
accuracy and computational cost. In this part, three mesh scales, 
80 × 4 = 320  elements, 60 × 4 = 240  elements and 40 ×
4 = 160 elements, are demonstrated in this part and the degree 
of interpolation is designed as 4 and the time step is chosen as 
10−8 𝑠𝑠 . The penalty coefficient is defined as 1 × 1010  which 
order of magnitude is the same as it of the largest element of the 
stiffness matrix. As shown in Figure 5, the 240 case is the best 
mesh scale which can get an accurate result with a relative cost. 
In addition, the following results are normalized to compare the 
different strategies.  

FIGURE 5: THE RESULTS OF CONVERGENCE 
ANALYSIS. 

In addition, the commercial software ABAQUS V6.14-1 is 
carried out to analyze the same work scenario. Four-node 
bilinear quadrilateral plane strain elements are used to mesh the 
structure. In the case of conventional FEM, the recommendation 
of element size is [14] 

le = λmin
20

 (23) 

where le  is the element length and λmin  denotes the shortest 
interested wavelength. The breathing crack is introduced by 
assigning the “frictionless hard contact” function to the crack 
surfaces, which can simulate the crack opens and closes due to 
the external load. The comparison of two kinds of results is 
plotted in Figure 6. It is obvious that a good agreement between 
two results and the second wave packet is caused by the crack. 
The result validates the effectiveness of the developed spectral 
element method and contact model. In addition, the 
computational scales of two methods are list in Table 2. 
Compared with conventional FEM, the proposed approach 
requires less computational cast and is more effective. 

TABLE 2: THE COMPUTATIONAL SCALES OF TWO 
METHODS. 

Number of elements Degree of 
freedom 

Time 
interval 

SEM 240 (with 4th 
interpolation) 8210 10−8 s 

FEM 8000 18026 10−8 s 
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FIGURE 6: THE COMPARISON OF RESULTS OF SEM 
AND FEM. 

4. NUMERICAL ANALYSIS OF TIME REVERSAL
GUIDED WAVE
In this section, the time reversal method is carried out to

detect the breathing crack of a specific model in Section 3. As 
shown in Fig.7, the process of time reversal consists of forward 
propagation and backward propagation. At first, the 
displacement excitation is applied at the left edge of the structure 
and the solution is captured at the right edge for 𝑡𝑡1 = 500𝜇𝜇𝑠𝑠. 
Then, this response is reversed in time domain and used as the 
new incident wave at the right edge for the backward propagation 
and the response is monitoring at the left edge, which is 
calculated for 2𝑡𝑡1 = 1000𝜇𝜇𝑠𝑠 to promise that the concentrated 
wave profile can be captured. For the sake of detecting the 
cracks, two structures, intact case and impaired case, are studied 
here.  

(a) FORWARD PROPAGATION

(b) BACKWARD PROPAGATION
FIGURE 7: THE PROCEDURE OF TIME REVERSAL 
METHOD. 

The reconstructed signals obtained for the two cases are 
illustrated in Fig. 8. In the case of the intact structure, the profile 
of reconstructed signal has a good agreement with the original 
input signal. However, the time reversal invariance is broken in 
the impaired case. The envelope of time history is obviously 
different form other cases, which amplitude in negative is much 
bigger than the positive direction. The reconstructed signals of 

several depths of crack, 2 mm (25% depth), 4 mm (50% 
depth)and 6 mm (75% depth), are compared in Fig. 9. As shown 
in this figure, the profile of the signals is a function of relative 
depth of cracks and the distortion is more distinct as the crack 
grows, which has potential to be a damage indicator. In addition, 
when the excitation is applied at the right edge and the response 
is picked up at the left edge, the reconstructed signal is different 
and its maximum value is positive. This solution may result from 
that the breathing crack is like a ‘filter’, which makes the waves 
that open the cracks easier to pass through and those that close 
the cracks harder to pass. Hence, the different excitation 
direction results in different wave propagation although the 
structure is symmetric in x-axis. 

FIGURE 8: THE RECONSTRUCTED SIGNALS FOR 
INTACT AND IMPAIRED STRUCTURES. 

FIGURE 9: THE RECONSTRUCTED SIGNALS FOR 
DIFFERENT RELATIVE DEPTH. 

FIGURE 10: THE RECONSTRUCTED SIGNALS FOR 
DIFFERENT APPLIED REGION 
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5. CONCLUSION
In this paper, a novel strategy combined time-domain

spectral element method and time reversal method is developed. 
By comparing the results and mesh scale of traditional FE 
method, the effectiveness and efficiency of the proposed method 
are illustrated. Based on the results of time reversal method, the 
reconstructed signals of intact and impaired structures are 
obviously different, which has the ability to be damage indicator. 
The results of different cases render that this strategy has the 
potential to reveal the depth and location of cracks. 
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